Thermal energy is a term used loosely as a synonym for more rigorously-defined thermodynamic quantities such as the internal energy of a system; heat or sensible heat, which are defined as types of transfer of energy (as is work); or for the characteristic energy of a degree of freedom in a thermal system , where is temperature and is the Boltzmann constant.
Video Thermal energy
Relation to heat and internal energy
Heat is energy transferred spontaneously from a hotter to a colder system or body. Heat is energy in transfer, not a property of any one system, or 'contained' within it. On the other hand, internal energy is a property of a system. In an ideal gas, the internal energy is the statistical mean of the gas particles' kinetic energy, and it is this kinetic motion that is the source and the effect of the transfer of heat across a system's boundary. For this reason, the term "thermal energy" is sometimes used synonymously with internal energy. (Heat and work depend on the way in which an energy transfer occurred, whereas internal energy is a property of the state of a system and can thus be understood even without knowing how the energy got there.) The term "thermal energy" is also applied to the energy carried by a heat flow,, although this quantity can also simply be called heat or amount of heat.
In many statistical physics texts, "thermal energy" refers to the product of Boltzmann's constant and the absolute temperature, typically written or . See the article kT (energy) for more details.
Maps Thermal energy
Historical context
In an 1847 lecture entitled "On Matter, Living Force, and Heat," James Prescott Joule characterised various terms that are closely related to thermal energy and heat. He identified the terms latent heat and sensible heat as forms of heat each affecting distinct physical phenomena, namely the potential and kinetic energy of particles, respectively. He described latent energy as the energy of interaction in a given configuration of particles, i.e. a form of potential energy, and the sensible heat as an energy affecting temperature measured by the thermometer due to the thermal energy, which he called the living force.
Useless thermal energy
If the minimum temperature of a system's environment is and the system's entropy is , then a part of the system's internal energy amounting to cannot be converted into useful work. This is the difference between the internal energy and the Helmholtz free energy.
See also
- Heat transfer
- Helmholtz free energy
- Ocean thermal energy conversion
- Orders of magnitude (temperature)
- Thermal energy storage
- Thermal science
References
Source of article : Wikipedia
